Statistical Moments based Noise Classification using Feed Forward Back Propagation Neural Network
نویسندگان
چکیده
A neural network classification based noise identification method is presented by isolating some representative noise samples, and extracting their statistical features for noise type identification. The isolation of representative noise samples is achieved using prevalent used image filters whereas noise identification is performed using statistical moments features based classification system. The results of the experiments using this method show better identification of noise than those suggested in the recent works. General Terms Image denoising, Pattern recognition.
منابع مشابه
Signal Prediction by Layered Feed - Forward Neural Network (RESEARCH NOTE).
In this paper a nonparametric neural network (NN) technique for prediction of future values of a signal based on its past history is presented. This approach bypasses modeling, identification, and parameter estimation phases that are required by conventional parametric techniques. A multi-layer feed forward NN is employed. It develops an internal model of the signal through a training operation...
متن کاملLung cancer classification using neural networks for CT images
Early detection of cancer is the most promising way to enhance a patient's chance for survival. This paper presents a computer aided classification method in computed tomography (CT) images of lungs developed using artificial neural network. The entire lung is segmented from the CT images and the parameters are calculated from the segmented image. The statistical parameters like mean, standard ...
متن کاملComparison of artificial neural network and multivariate regression methods in prediction of soil cation exchange capacity (Case study: Ziaran region)
Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data...
متن کاملPerformance Evaluation Analysis of MLP & DG-RBF Feed Forward Neural Networks for Pattern Classification of Handwritten English Curve Scripts
The purpose of this study is to evaluate the performance analysis of multilayer feed forward neural networks trained with back propagation algorithm & descent gradient Radial basis function network for the pattern classification of hand written curve script. This analysis has been done for handwritten text of three letters and for the individual English vowels. This analysis in the performance ...
متن کاملHandwritten Character Recognition using Modified Gradient Descent Technique of Neural Networks and Representation of Conjugate Descent for Training Patterns
The purpose of this study is to analyze the performance of Back propagation algorithm with changing training patterns and the second momentum term in feed forward neural networks. This analysis is conducted on 250 different words of three small letters from the English alphabet. These words are presented to two vertical segmentation programs which are designed in MATLAB and based on portions (1...
متن کامل